3,914 research outputs found

    Short-term power generation scheduling rules for cascade hydropower stations based on hybrid algorithm

    Get PDF
    AbstractPower generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity of optimal scheduling processes were obtained by calculating the daily runoff process within three typical years, and a large number of simulated daily runoff processes were obtained using the progressive optimality algorithm (POA) in combination with the genetic algorithm (GA). After analyzing the optimal scheduling processes, the corresponding scheduling rules were determined, and the practical formulas were obtained. These rules can make full use of the rolling runoff forecast and carry out the rolling scheduling. Compared with the optimized results, the maximum relative difference of the annual power generation obtained by the scheduling rules is no more than 1%. The effectiveness and practical applicability of the scheduling rules are demonstrated by a case study. This study provides a new perspective for formulating the rules of power generation dispatching

    Multi-parameter Tests of General Relativity Using Bayesian Parameter Estimation with Principal Component Analysis for LISA

    Full text link
    In the near future, space-borne gravitational wave (GW) detector LISA can open the window of low-frequency band of GW and provide new tools to test gravity theories. In this work, we consider multi-parameter tests of GW generation and propagation where the deformation coefficients are varied simultaneously in parameter estimation and the principal component analysis (PCA) method are used to transform posterior samples into new bases for extracting the most informative components. The dominant components can be better mesured and constrained and are more sensitive to potential departures from general relativity (GR). We extend previous works by employing Bayesian parameter estimation and performing both null tests and tests with injections of subtle GR-violated signals. We also apply multi-parameter tests with PCA in the phenomenological test of GW propagation. This work complements previous works and further demonstrates the enhancement provided by the PCA method. Considering a supermassive black hole binary system as the GW source, we find that 1σ1\sigma bounds of the most dominant PCA parameter can be one order of magnitude tighter than the bounds of original deformation parameter of leading frequency order. The departures less than 1σ1\sigma in original parameters can yield significant departures in first 5 dominant PCA parameters.Comment: 16 pages, 6 figure

    Design And Fabrication of Condenser Microphone Using Wafer Transfer And Micro-electroplating Technique

    Get PDF
    A novel fabrication process, which uses wafer transfer and micro-electroplating technique, has been proposed and tested. In this paper, the effects of the diaphragm thickness and stress, the air-gap thickness, and the area ratio of acoustic holes to backplate on the sensitivity of the condenser microphone have been demonstrated since the performance of the microphone depends on these parameters. The microphone diaphragm has been designed with a diameter and thickness of 1.9 mm and 0.6 μ\mum, respectively, an air-gap thickness of 10 μ\mum, and a 24% area ratio of acoustic holes to backplate. To obtain a lower initial stress, the material used for the diaphragm is polyimide. The measured sensitivities of the microphone at the bias voltages of 24 V and 12 V are -45.3 and -50.2 dB/Pa (at 1 kHz), respectively. The fabricated microphone shows a flat frequency response extending to 20 kHz.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Dynamic analysis of flexible hoisting rope with time-varying length

    No full text
    The governing equations of flexible hoisting rope are developed employing Hamilton’s principle. Experiments are performed. It is found that the experimental data agree with the theoretical prediction very well. The results of simulation and experiment show that the flexible hoisting system dissipates energy during downward movement but gains energy during upward movement. Further, a passage through resonance in the hoisting system with periodic external excitation is analyzed. Due to the time-varying length of the hoisting rope the natural frequencies of the system vary slowly, and transient resonance may occur when one of frequencies coincides with the frequency of external excitation.Основні рівняння гнучкого підіймального тросу отримано застосуванням принципу Гамільтона. Проведено експерименти, результати яких добре узгоджуються з теоретичним передбаченням. Результати моделювання і експеримент показують, що гнучка підіймальна система розсіює енергію при спуску і накопичує енергію при підйомі. Далі досліджувався перехід гнучкої підіймальної системи через резонанс за умови періодичного зовнішнього збудження. Якщо довжина гнучкої підіймальної системи змінюється з часом, то власні частоти системи слабо змінюються і можуть спостерігатися перехідні резонанси, коли одна з частот співпадає з частотою зовнішнього збудження

    Trade-Offs between the Metabolic Rate and Population Density of Plants

    Get PDF
    The energetic equivalence rule, which is based on a combination of metabolic theory and the self-thinning rule, is one of the fundamental laws of nature. However, there is a progressively increasing body of evidence that scaling relationships of metabolic rate vs. body mass and population density vs. body mass are variable and deviate from their respective theoretical values of 3/4 and −3/4 or −2/3. These findings questioned the previous hypotheses of energetic equivalence rule in plants. Here we examined the allometric relationships between photosynthetic mass (Mp) or leaf mass (ML) vs. body mass (β); population density vs. body mass (δ); and leaf mass vs. population density, for desert shrubs, trees, and herbaceous plants, respectively. As expected, the allometric relationships for both photosynthetic mass (i.e. metabolic rate) and population density varied with the environmental conditions. However, the ratio between the two exponents was −1 (i.e. β/δ = −1) and followed the trade-off principle when local resources were limited. Our results demonstrate for the first time that the energetic equivalence rule of plants is based on trade-offs between the variable metabolic rate and population density rather than their constant allometric exponents

    Acute Kidney Injury Biomarkers for Patients in a Coronary Care Unit: A Prospective Cohort Study

    Get PDF
    Background: Renal dysfunction is an established predictor of all-cause mortality in intensive care units. This study analyzed the outcomes of coronary care unit (CCU) patients and evaluated several biomarkers of acute kidney injury (AKI), including neutrophil gelatinase-associated lipocalin (NGAL), interleukin-18 (IL-18) and cystatin C (CysC) on the first day of CCU admission. Methodology/Principal Findings: Serum and urinary samples collected from 150 patients in the coronary care unit of a tertiary care university hospital between September 2009 and August 2010 were tested for NGAL, IL-18 and CysC. Prospective demographic, clinical and laboratory data were evaluated as predictors of survival in this patient group. The most common cause of CCU admission was acute myocardial infarction (80%). According to Acute Kidney Injury Network criteria, 28.7 % (43/150) of CCU patients had AKI of varying severity. Cumulative survival rates at 6-month follow-up following hospital discharge differed significantly (p,0.05) between patients with AKI versus those without AKI. For predicting AKI, serum CysC displayed an excellent areas under the receiver operating characteristic curve (AUROC) (0.89560.031, p,0.001). The overall 180-day survival rate was 88.7 % (133/150). Multiple Cox logistic regression hazard analysis revealed that urinary NGAL, serum IL-18, Acute Physiology, Age and Chronic Health Evaluation II (APACHE II) and sodium on CCU admission day one were independent risk factors for 6-month mortality. In terms of 6-month mortality, urinary NGAL had the best discriminatory power, the best Youden index, and the highest overall correctness of prediction

    Observation of interlayer phonon modes in van der Waals heterostructures

    Get PDF
    We have investigated the vibrational properties of van der Waals heterostructures of monolayer transition metal dichalcogenides (TMDs), specifically MoS2/WSe2 and MoSe2/MoS2 heterobilayers as well as twisted MoS2 bilayers, by means of ultralow-frequency Raman spectroscopy. We discovered Raman features (at 30 ~ 40 cm-1) that arise from the layer-breathing mode (LBM) vibrations between the two incommensurate TMD monolayers in these structures. The LBM Raman intensity correlates strongly with the suppression of photoluminescence that arises from interlayer charge transfer. The LBM is generated only in bilayer areas with direct layer-layer contact and atomically clean interface. Its frequency also evolves systematically with the relative orientation between of the two layers. Our research demonstrates that LBM can serve as a sensitive probe to the interface environment and interlayer interactions in van der Waals materials

    Screening and analysis of soda saline-alkali stress induced up- regulated genes in sugar sorghum

    Get PDF
    Soil salinization severely constrains the growth of crops, which ultimately leads to reduced yields. Because Sorghum dochna (common name sugar sorghum) has the advantageous properties of excellent salt stress resis- tance, high biomass, and tremendous flexibility for utilization as food, livestock feed, and industrial products, this species holds great potential to be further developed as a primary alternative crop. To elucidate the molecular mechanism that governs sugar sorghum’s adaptation to high salinity environments, we constructed a suppression subtractive hybridization (SSH) cDNA library from sugar sorghum transcripts that contains the soda saline-alkali induced up-regulated genes from the resistant variety M-81E. The SSH cDNA library was screened by using the colony hybridization method, and the ESTs obtained were sequenced and analyzed. A total of 200 EST clones were identified, representing 127 unigenes (6 contigs and 121 singlets). A Blast analysis showed that 48 ESTs (46.6%) have annotated functions in GenBank, 55 ESTs (53.4%) have unknown functions (or encode hypothetical proteins), and 24 ESTs (18.9%) have no blast hits. The majority of the hypothetical ESTs from the cDNA library displayed very high sequence similarity with their homologs found through GenBank. A clustering analysis of the ESTs with known functions indicated that a wide variety of genes were induced during the salt stress treatment. These genes were found to function in photosynthesis, material and energy metabolism (carbohydrates, lipids, amino acids, co-enzymes, ions, etc.), synthesis or maintenance of constituents of the cell wall and cell membrane, signal transduction, transcriptional regulation, and as water channels. This indicates that sugar sorghum tolerance to soda saline-alkali stress results from the coordinated functions of many genes
    corecore